
Improving Agility in Business Applications using Ontology Based

Multilingual Understanding of Natural Business Rules

Ammar Joukhadar

Hala Al-Maghout
Information Technology Faculty, Damascus University

ammarj@scs-net.org, hala237@hotmail.com

Abstract:

Business applications need to be agile i.e. easily and

quickly modified in order to respond to the frequent

changes of business policies due to regulatory and

market changes. Thus, agility in addition to reduction in

cost of maintenance and development are key

motivations for the adoption of business rules

methodology. Domain experts are responsible for

specifying business rules which are input to business

applications usually by programmers. In order to

increase agility, domain experts must be able to specify

business rules to business applications directly in

natural language without programmers’ intervention. In

addition, understanding business rules in many

languages is highly required, because business rules

management systems are universal applications that

need to support different languages. In this paper, we

present a cost and time effective multilingual solution

that improves agility in business application by enabling

the domain expert to specify business rules to the

business application directly in many natural languages

using a novel approach to natural business rules

understanding based on the business models and

enriched metadata provided by Elixir MDA Framework

1 Introduction:

Business Rules are increasingly being used in the

development of business applications. The key

motivation for the adoption of business rules is to use

them to adapt the business application easily and quickly

in the face of frequent and rapid changes in the market.

Business rules define business policies which are

specified by domain experts and input to the business

application by programmers. The need for programmers

to transform business rules specified by domain experts

into a programming language poses cost, time and

accuracy problems. First of all, much time and cost is

spent educating programmers on the details of the

business as they find it difficult to fully understand the

business logic. This difficulty arises from the fact that

programmers do not possess the business model of

domain experts which forms the context in which

business rules are understood. As a result, programmers

may misunderstand the domain experts and this causes

errors in the implementation of business rules. In

addition, business rules are frequently changed because

of competitive and regulatory pressures. The need for

programmers to implement those changes every time

they are needed takes time and raises costs, which

directly impacts system agility. Because of the

previously mentioned problems, a solution that enables

the domain expert to specify business rules in natural

language directly without programmers’ intervention

will have many precious benefits. First, it will make the

business application more easily and quickly modified

by the domain experts themselves, which allows the IT

system to stay up-to-date with the current business

policies without the need for a long change

implementation process. Second, it will eliminate cost

and time needed to educate the programmers on the

details of the business. Third, it will ensure business

rules accuracy and consistency with business policies.

Last, it will help to document business rules in natural

language and thus make them understandable and

modifiable by other domain experts.

Building a multilingual system for understanding natural

business using traditional methods is not practical.

Traditional methods in natural language processing

divide the analysis of natural language text into number

of levels [1]. Many language resources are required to

perform this analysis from dictionaries and

morphological analyzers to syntactic analyzers and

experienced linguists. Those resources need time and

cost to be available and they are language dependent i.e.

each language requires its own resources. Besides,

business rules management systems need to be

multilingual, because they spread worldwide and must

be adaptable to the requirements such as regulations and

language of each country.

Solutions previously followed to enable domain experts

to specify business rules in natural language are mainly

divided into two kinds of methods: methods that use

natural language templates and methods that use

controlled natural language. The first kind, which is used

by many commercial business rules management

systems such as Drools [2], uses natural language

templates which are predefined natural language phrases

that represent conditions or actions and each has an

equivalent in a programming language defined by

programmers. Although this solution is easy to

implement, it does not solve the problem completely; it

still needs programmers to define the templates and

implement any change in them. In addition, the domain

expert is restricted to use those templates in expressing

his rules and thus he has to learn and memorize them,

which is not an easy task especially as the number of the

templates increases. The second kind, which is used in

commercial systems such as Haley Authority [3], uses

controlled natural languages [4] .Applying language

analysis on a controlled natural language is simpler as

much ambiguity and complexity is reduced, which

reduces cost and time needed to build such systems.

Although using controlled natural language gives

domain experts a considerable flexibility, it still requires

language resources and designing a controlled natural

language for each supported language which increases

cost and time required as the number of languages to be

supported increases. In addition the domain expert has to

learn the grammars and structures of the controlled

natural language in order to be able to use it properly to

express natural business rules, which limits his freedom.

In order to understand a natural language sentence, we

must have a world model (ontology) which represents a

particular context in which the sentence is to be

evaluated [1]. The domain expert specifies business rules

in the context of business model or domain ontology.

Thus, in order to enable the computer to understand

natural business rules, the business model must be

transferred first to the computer. MDA (Model driven

architecture) provides us with the means of this transfer.

MDA is an approach to system development, which

increases the power of models in that work [5]. Systems

based on MDA build the business models before writing

the programs that use them, which enables to use those

business models as ontology required to understand

business rules. Elixir Framework [6] is MDA based and

provides us with the required business models along with

enriched metadata about them which made it a suitable

environment to develop our solution.

In this paper we propose a solution that improves agility

in business applications by enabling the domain expert to

input business rules to the business application in many

languages without programmer intervention. Our

solution uses a novel approach to natural business rules

understanding based on business models provided by

Elixir MDA Framework [6] in the form of UML class

diagrams along with their Elixir enriched metadata. Our

solution provides many features. First of all, it is

multilingual; it enables the domain expert to write

business rules in many natural languages. It is also cost

and time effective because it needs no language

resources, requires no syntactic or morphological

analyzers and learns morphological rules of the language

through interaction with the domain expert. In addition,

it gives the domain expert the freedom to express rules

using his own language and does not limit him to the use

of specific grammatical structures or predefined phrases.

The next section describes our approach. In sections

three through six we describe the details of our method.

Section seven presents our algorithm. Section eight

describes system configuration and rule authoring

through examples in Arabic and English. In the last

section we conclude with future work.

 2 Approach:

We base our approach on the idea that each business rule

is understood in the context of a business model. Thus,

each business rule should reflect the business model and

conform to it. This enables us to use the business model

to guide the natural business rules understanding

process. Elixir Framework provides us with rich

information about the business model in the form of

model metadata enriched with Elixir stereotypes and

tagged values required to guide the understanding

process. In addition, Elixir Framework provides the

domain expert with the ability to specify the natural

language representation of the business model which

makes the business model a dictionary of business

terminology. Natural business rule understanding starts

by first trying to recognize business concepts and their

properties and relations referenced in the rule by

mapping their natural language representation specified

in the business model with natural language expressions

in the natural business rule. Then it tries to construct the

logical expressions that constitute the conditions of the

rule based on heuristics that use metadata about the

business model in addition to logical rules of the

conditions of the business rule. Our approach

dependence on rich information about the business

model enables us to understand the natural business rule

without the need for syntactic analysis, which makes our

approach language independent and provides the domain

expert with the flexibility to use different grammatical

structures. We overcome the problem of mapping

different morphological forms of the words in the

business rule by enabling the system to learn the

morphology of the language through interaction with the

domain expert and thus eliminating the tedious work of

adding every morphological form of every word to the

dictionary.

 3 Ontology:

Elixir Framework takes into account several UML

views. In our work we used the UML class diagram view

as the business model which represents the context in

which the business rules will be understood. UML class

diagram view in Elixir Framework consists of the

business concepts and their properties and relations in a

specific business domain. Each business concept has a

number of properties and operations. Each property takes

a value of a type which is simple (numeric, string, date,

boolean...etc.). Some properties have a set of predefined

possible values from which they take their values. An

operation is the same as a property but it has a number of

parameters each of which takes a value of simple type.

Each business concept has relations with other concepts.

A relation relates a pair of concepts and it is of two

kinds: one to one and one to many. One to one relation

relates an instance of the concept to only one instance of

the other concept. One to many relation relates an

instance of the concept to a number of instances of the

other concept. Elixir Framework provides rich metadata

which is information about different constituents of the

business model. This metadata plays an essential role in

our approach to understanding natural business rules.

4 Representing Ontology with Natural

Language:

Knowledge representation is a key issue in Artificial

Intelligence. The way the knowledge is represented

entails the ways the knowledge can be manipulated [7].

We found that representing our business model with

semi structured natural language fragments defined by

the domain expert is the most suitable representation,

because words and expressions used to represent the

concepts and their properties and relations in the

business model automatically inherit their meaning from

the way they used by the domain expert. In addition, this

representation enables us to directly map natural

language expressions used in natural business rules to

natural words and expressions of the business model.

Elixir Framework enables the domain expert to define

words and natural language expressions that represent

business concepts, their properties and operations, and

their relations in many natural languages. Those natural

language expressions are mapped to the natural language

expressions used in natural business rule as the first step

of the natural business rule understanding process. Thus,

the natural language representation of the business

model provided by Elixir Framework plays the role of a

dictionary that contains the business terminology defined

by domain experts in many languages.

5 Business Rules:

Business rules are abstractions of the policies and

practices of a business organization [8].There are two

fundamental categories business rules: structural rules

and operative rules [9]. Structural rules are rules about

how the business chooses to organize the things it deals

with. Operative rules are rules that govern the conduct of

business activity. In our approach we handle operative

business rules; we suppose that structural business rules

that define the business model have already been defined

by the domain expert and entered to the system in the

form of UML class diagram. Each business rule has a

business concept from the business model on which it

will be applied. We call this concept the main concept of

the rule. The domain expert specifies the main concept

for each business rule he writes. Each business rule

consists logically of one or more conditions that has

logical “and” between them. Each condition has a

boolean value, either true or false. The result of the rule

is a boolean value that is the result of applying the

boolean “and” on the boolean values of all the conditions

of the rule. The rule conditions are applied on the

instances of the main concept of the rule. Each rule

condition is logically either an access to a boolean

operation or property in a concept in the business model,

or a comparative phrase that contains a comparative

operation between the values of two expressions. To

access a property of a concept in the business model in

the business rule, all related concepts from the main

concept to the owner concept of this property must be

mentioned. Accessing an operation is similar, but the

values of its parameters must be specified. The

comparative condition consists of a comparative

operation (>, <, >=, <=, =, !=) and two expressions that

represent the left and right sides of the comparative

operation. The left side of the comparative operation is a

property or operation access expression that returns a

comparable value. The right side of the comparative

condition is either a constant or a property or operation

access expression. There are number of logical operators

can be used in rules such as the negation operator to

invert the value of a condition and quantifiers which

have two kinds: existential quantifiers and universal

quantifiers.

To author business rules in natural language the domain

expert uses natural language expressions, which he has

already defined to represent the business model, in

addition to natural language expressions that represent

the logical operations (comparative, negation,

quantification) which have also been defined by him.

6 Morphology Learning Using String Edit

Distance:

Although the domain expert uses natural language

expressions from business model to express business

rules, he might not use it in its exact form; he might use

different morphological forms of some words. In

addition, some morphemes in some languages carry the

meaning of some logical operations like negation and

comparative operations. To avoid the need to add every

possible morphological form of every word to the

dictionary, which is very tedious work for the domain

expert and increases the size of the dictionary and makes

it difficult to maintain, we enabled the system to learn

different morphological forms of the words of any

language through its interaction with the domain expert.

In order to enable the system to learn morphology, we

need a metric to discover the morphemes. We used string

edit distance (SED) metric [10] to morphologically

segment words and identify language affixes. String edit

distance determines the distance between two strings

measured by the minimum cost sequence of "edit

operations" needed to change the one string into the

other. The edit operations allow changing one symbol of

a string into another single symbol, deleting one symbol

from a string, or inserting a single symbol into a string.

A solution based on dynamic programming computes the

distance between strings in time proportional to the

product of the lengths of the two strings [10].

Consequent edit operations in a specific place form an

affix. A recent work [11] used string edit distance as a

bootstrapping heuristic in unsupervised learning of

morphology. In our approach, we used string edit

distance in supervised learning of morphology. When the

system fails to match a word from the natural business

rule with a word from natural expressions of the business

model, it tries to hypothesize the words from the

expressions of business model which are most similar to

the given word based on string edit distance and then it

suggests those words to the domain expert. The domain

expert is asked to choose the word he means from those

suggested words. Then affixes discovered using string

edit distance is added to the learnt affixes of the

language and the system will be able to generalize this

case to other cases and thus it learns the affixes of a

language through its interaction with the domain expert.

7 Algorithm:

Our algorithm follows the following steps to understand

natural business rule:

1. Extract the conditions of the natural business rule.

2. Apply the following on each extracted condition:

2.1. Consider the main concept as the current

concept.

2.2. Match natural language expressions that

represent properties, operations and relations

of the current concept in the business models

with the natural language expressions used in

the condition using string edit distance and the

learnt language affixes.

2.3. For each concept matched in the previous step,

 if the concept is complex then

make the found concept the

current concept and then go to

step 2.2

2.4. For each operation matched in 2.2 find the

values of the parameters of the operation based

on their types.

2.5. Find quantifiers and negation operation and

comparative operations in the condition along

with their operands.

2.6. Check the validity of the interpretation found

based on the business model metadata.

3. When more than one valid interpretation is found,

choose the one that matches longest natural

language expressions from natural language

expressions in the business model.

4. Convert the interpretation of the condition to a

logical format.

When there is an error in the rule, no valid interpretation

will be found; in this case the system tells the domain

expert of the place and cause of error and offers

suggestions to correct the error according to writing

context. Also, the system uses metadata about the

business model to offer context sensitive help that guides

the domain expert during writing rules and helps to

ensure rules correctness and compliance with the

business model.

8 Examples:

In this section we describe the initial language

configuration done by domain expert along with a

scenario of interaction between the domain expert and

the system during rule authoring through two examples;

the first in Arabic and the second in English.

We suppose we have the business model illustrated in

the UML class diagram below, which represents a

simplified sub diagram of a class diagram that represents

a bank system. This business model is specified by the

domain expert and input to the application.

Figure1: UML class diagram

The Elixir MDA Framework enables the domain expert

to specify the natural language representation of the

business model above in many languages. For example

the Arabic natural expression of the concept “Account”

is “الحساب” and the English natural expression of the

property “sumOfTransactions” from the “Account”

concept is “sum of transactions”.

Before the domain expert can write business rules,

language configuration is required. Language

configuration consists of the following steps for each

language:

 Specifying the natural language expressions

that represent the logical operators (>, <, ==

...etc.) used in writing rules.

 Specifying the type of each logical operator

which is either unary or binary. Binary

operators take two operands, whereas unary

operators take only one.

 Specifying the order of the operands of the

logical operators relative to each other and to

the operator, which may vary from language to

language.

After this simple configuration which can be easily done

by the domain expert, he will be able to write his

business rules according to the following steps:

 Determining the main concept of the rule.

 Specifying the rule name which reflects the

purpose of the rule. The rule name is common

to all rules which have the same purpose.

 Writing the rule.

8.1 Arabic Example:

We suppose that language configuration of the Arabic

language has been done according to the aforementioned

steps. The domain expert can then write a business rule

which identifies suspicious activities according to the

following steps:

 Main concept: "التحويل المالي" .

 Rule name: "تحويل مالي مشبوه" .

 rule:

المالي هو حساب في بنك من دولة الحساب المصدر للتحويل "

"011111خطيرة و قيمته أكبر من أو تساوي

The rule consists of two conditions. The system is unable

to understand the second condition because it failed to

recognize the word "قيمته" which is equivalent to the

word "القيمة" with a prefix "ال" and a suffix “ه” which

causes the letter "ة" at the end of the word to be replaced

by the letter "ت" . In this case the system searches for the

natural language expressions of the Account concept

which is similar to a natural language expression in the

condition according to the string edit distance. The

system then suggests the words "قيمته" and "القيمة" as

equivalents. The domain expert accepts the suggestion in

this case and the system learns that "ال" comes as a

prefix and "ه" as suffix and in this case it causes "ة" at the

end of the word to be substituted by "ت" . When words

that carry those affixes occur again, the system will

recognize them immediately using the knowledge it

acquired by learning through interaction with the domain

expert. The system is now able to understand the rule

and convert it to the following logical format:

sendingAccount.bank.country.isHighRisk && amount

>= 100000

8.2 English Example:

The domain expert inputs the following English rule:

 Main concept: account.

 Rule name: suspicious activity.

 Rule: sum of transactions of cash deposits

during 30 days is greater than 100000.

The rule consists of two conditions. The system is unable

to understand the second condition because it failed to

recognize the expression ”cash deposits” because of the

“s” suffix at the end of the word “deposit”. In this case

the system knows using the metadata about the business

model that the operation “sum of transactions” takes a

parameter which is the transactions type which is either

“cash deposit” or “cash withdrawal”. Thus the system

searches for a natural language expression in the second

condition which is most similar to the expressions that

represent transaction type and suggests “cash deposits”

to be equivalent to “cash deposit”. The domain expert

approves on the suggestion and the system learns that

“s” is added as a suffix. Now the system is able to

understand the rule and as a result it converts it to the

following logical format:

account.sumOfTransactions (“cashDeposits”, 30) >

100000

9 Conclusion and Future Work:

We presented a solution that improves agility in business

application through enabling the domain expert to

specify business rules in many natural languages without

programmer assistance. Our solution has the following

features:

 It uses a novel approach to natural business

rules understanding based on business models

in the form of UML class diagrams provided by

Elixir Framework.

 It is multilingual. It is easily configured by the

domain expert to support a new natural

language.

 It is time and cost effective. It needs no

language resources thanks to the novel

approach that understands the natural business

rule without syntactic analysis and learns the

morphology of the language through interaction

with the domain expert.

 It provides context sensitive assistance that

guides the domain expert during rules authoring

and ensures rules correctness.

 It gives the domain expert the freedom to use

flexible natural language to express his rules

because it does not limit him to the use of

specific grammatical structures or predefined

phrases.

In future work we plan to enable the domain expert to

test the result of applying business rules by providing

him the ability to query the business rules in natural

language and display the results of the query in natural

language. We also plan to add improvements to the

technique used in learning the morphology of the

language in order to increase the confidence of correct

affixes learnt and reduce invalid affixes.

References:

[1] Allen, James F.(1995) Natural Language

Understanding, The Benjamin/Cummings Publishing

Company, Menlo Park, California,(Addison-Wesley

Publishing Company, Reading, Massachusetts).

[2] Proctor,M. ,Neale, M., Lin, P.,and Frandsen, M.,

Drools Documentation, <http://labs.jboss.com/file-

access/default/members/jbossrules/freezone/docs/3.0.4/h

tml_single/index.html#preface>.

[3] Haley Systems, Inc. Haley’s Natural Language

Interface, 2006.

[4] Controlled Natural Languages,<

http://www.ics.mq.edu.au/~rolfs/controlled-natural-

languages>

[5] OMG, MDA Guide Version 1.0.1(2003), omg/2003-

06-01, 12th June 2003.

[6] Elixir for intelligent software (2006) Elixir MDA

Framework, www.al-ixir.com.

[7] Davis, R., Shrobe, H., and Szolovits, P.What is a

knowledge representation? AI Magazine 14, 1 (1993),

17.

[8] Business rules,

<http://en.wikipedia.org/wiki/Business_rules>.

[9] OMG, Semantics of Business Vocabulary and

Business Rules (SBVR), Second SBVR Interim

Specification without change bars dtc/06-08-05.

[10] Robert A. Wagner and Michael J. Fischer. 1974.

The string-to-string correction problem. Journal of the

Association for Computing Machinery, 21(1):168–173.

[11] John Goldsmith, Yu Hu, Irina Matveeva, and Colin

Sprague.2005. A heuristic for morpheme discovery

based on string edit distance. Technical Report TR-2205-

04, Department of Computer Science, University of

Chicago.

